Alternativer Identifier:
(KITopen-DOI) 10.5445/IR/1000082194
Verwandter Identifier:
-
Ersteller/in:
Barth, Lukas [Barth, Lukas]

Hagenmeyer, Veit [Hagenmeyer, Veit]

Ludwig, Nicole [Ludwig, Nicole]

Wagner, Dorothea [Wagner, Dorothea]
Beitragende:
(Other)
Bischof, Simon [Bischof, Simon]

(Other)
Trittenbach, Holger [Trittenbach, Holger]

(Other)
Vollmer, Michael [Vollmer, Michael]

(Other)
Werle, Dominik [Werle, Dominik]
Titel:
Dataset accompanying "How much demand side flexibility do we need? - Analyzing where to exploit flexibility in industrial processes"
Weitere Titel:
-
Beschreibung:
(Technical Remarks) This data accompanies the Paper "How much demand side flexibility do we need? - Analyzing where to exploit flexibility in industrial processes".[0] The raw data which this data set is based on, is the HIPE dataset[1], which can be found at https://www.energystatusdata.kit.edu/hipe.php . In the accompanying publication, you can find an in-depth description of the data, how it was gathered, what types of machines were covered, etc. This data package contains: * The instances of the four test sets in [0]. These can be found in the subfolder "instances". The "PS_Nonuniform", "PS_Uniform", "PSG" and "OM" subfolders contain the 450 instances of each set, one instance per file. The file format is explained in the "file_format.{md, html, pdf}" files. * Information about our computational results as a SQLite3 database in the "results" subfolder. Information about the database structure can be found in the "db_structure.{md, html, pdf}" files. [0] Lukas Barth, Veit Hagenmeyer, Nicole Ludwig, and Dorothea Wagner. 2018. How much demand side flexibility do we need? Analyzing where to exploit flexibility in industrial processes. In Proceedings of ACM eEnergy Conference (eEnergy’18). ACM, New York, NY, USA, 20 pages. (to appear) [1] Simon Bischof, Holger Trittenbach, Michael Vollmer, Dominik Werle, Thomas Blank, and Klemens Böhm. 2018. HIPE – an Energy-Status-Data Set from Industrial Production. In Proceedings of ACM e-Energy (e-Energy ’18). ACM, New York, NY, USA, 5 pages. (to appear)
Schlagworte:
-
Zugehörige Informationen:
-
Sprache:
-
Erstellungsjahr:
Fachgebiet:
Computer Science
Objekttyp:
Dataset
Datenquelle:
-
Verwendete Software:
-
Datenverarbeitung:
-
Erscheinungsjahr:
Rechteinhaber/in:
Barth, Lukas

Hagenmeyer, Veit

Ludwig, Nicole

Wagner, Dorothea
Förderung:
-
Name Speichervolumen Metadaten Upload Aktion
Status:
Publiziert
Eingestellt von:
kitopen
Erstellt am:
Archivierungsdatum:
2023-06-21
Archivgröße:
10,1 MB
Archiversteller:
kitopen
Archiv-Prüfsumme:
b770a927d50588a90e7007c1c37d7ed3 (MD5)
Embargo-Zeitraum:
-