Direkt zum Inhalt

Diese Website setzt ausschließlich technisch notwendige Cookies ein, die spätestens mit dem Schließen Ihres Browsers gelöscht werden. Wenn Sie mehr über Cookies erfahren möchten, klicken Sie bitte auf die Datenschutzerklärung.

DE EN
Testen Anmelden
Logo, zur Startseite
  1. Sie sind hier:
  2. Dataset for rearrangement of secondary flow over spanwise heterogeneous roughness
...

    Datenpaket: Dataset for rearrangement of secondary flow over spanwise heterogeneous roughness

    • RADAR-Metadaten
    • Inhalt
    • Statistiken
    • Technische Metadaten
    Alternativer Identifier:
    (KITopen-DOI) 10.5445/IR/1000100142
    Verwandter Identifier:
    -
    Ersteller/in:
    Stroh, A. [Stroh, A.]

    Schäfer, K. https://orcid.org/0000-0002-1704-8233 [Schäfer, K.]

    Frohnapfel, B. [Frohnapfel, B.]

    Forooghi, P. [Forooghi, P.]
    Beitragende:
    -
    Titel:
    Dataset for rearrangement of secondary flow over spanwise heterogeneous roughness
    Weitere Titel:
    -
    Beschreibung:
    (Technical Remarks) These files contain the data used in the publication: “Rearrangement of secondary flow over spanwise heterogeneous roughness” A. Stroh, K. Schäfer, B. Frohnapfel and P. Forooghi published in Journal of Fluid Mechanics, 2019. (DOI: 10.1017/jfm.2019.1030) Abstract: Turbulent flow over a surface with ... These files contain the data used in the publication: “Rearrangement of secondary flow over spanwise heterogeneous roughness” A. Stroh, K. Schäfer, B. Frohnapfel and P. Forooghi published in Journal of Fluid Mechanics, 2019. (DOI: 10.1017/jfm.2019.1030) Abstract: Turbulent flow over a surface with streamwise-elongated rough and smooth stripes is studied by means of direct numerical simulation (DNS) in a periodic plane open channel with fully resolved roughness. The goal is to understand how the mean height of roughness affects the characteristics of the secondary flow formed above a spanwise-heterogeneous rough surface. To this end, while the statistical properties of roughness texture as well as the width and spacing of the rough stripes are kept constant, the elevation of the smooth stripes is systematically varied in different simulation cases. Utilizing this variation three configurations representing protruding, recessed and an intermediate type of roughness are analysed. In all cases secondary flows are present and the skin friction coefficients calculated for all the heterogeneous rough surfaces are meaningfully larger than what would result from the area-weighted average of those of homogeneous smooth and rough surfaces. This drag increase appears to be linked to the strength of the secondary flow. The rotational direction of the secondary motion is shown to depend on the relative surface elevation. The present results suggest that this rearrangement of the secondary flow is linked to the spatial distribution of the spanwise-wall-normal Reynolds stress component which carries opposing signs for protruding and recessed roughness. Numerical Details: The carried out DNS is based on a pseudo-spectral solver for incompressible boundary layer flows developed at KTH/Stockholm. The Navier-Stokes equations are numerically integrated using the velocity-vorticity formulation by a spectral method with Fourier decomposition in the horizontal directions and Chebyshev discretization in the wall-normal direction. For temporal advancement, the convection and viscous terms are discretized using the 3rd order Runge-Kutta and Crank-Nicolson methods, respectively. The simulation domain represents an open turbulent channel flow with periodic boundary conditions applied in streamwise and spanwise directions, while the wall-normal extension of the domain is bounded by no-slip boundary conditions at the lower domain wall (y = 0) and symmetry boundary conditions (v = 0, ∂u/∂y = ∂w/∂y = 0) at the upper boundary (y = δ). The flow is driven by a prescribed constant pressure gradient (CPG). The friction Reynolds number for the present case is fixed to Re_τ = 500. Simulation configuration - Grid nodes: Nx x Ny x Nz = 768 × 301 × 384 - Domain size: Lx x Ly x Lz = 8δ × δ × 4δ - Resolution: ∆x+=5.2, ∆y_min+=0.014, ∆y_max+=2.6, ∆z+ = 5.2 The surface structure is introduced through an immersed boundary method (IBM) based on the method proposed by Goldstein et al. (1993) and is essentially a proportional controller which imposes zero velocity in the solid region of the numerical domain. The structure is placed on the lower domain wall in such a way that the surface height H of the largest raised surface elements is given by H/δ = 10.2%. Data Files: The data files are saved and labeled corresponding to the figure in the manuscript in *.mat files. Each file contains MATLAB data consisting of the plotted quantities and corresponding coordinates. The data is non-dimensionalized as shown in the manuscript figures utilizing friction velocity u_τ, viscous lengthscale δ_ν or bulk mean velocity U_b and effective domain height δ_eff. A matlab script “plot_figures.m” provides the code, which loads the data and plots it in the same way as it has been done in the manuscript. “height_distributions.mat” contains the original roughness distributions utilized in the considered simulations. The files can be also loaded and plotted using “plot_figures.m” 3-dimensional instantaneous snapshot and time series of velocity fields is available upon request (alexander.stroh@kit.edu). Reference: Please provide a reference to the article above when using this data. Please direct questions regarding numerical setup/data to Alexander Stroh Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ November, 2019

    These files contain the data used in the publication: “Rearrangement of secondary flow over spanwise heterogeneous roughness” A. Stroh, K. Schäfer, B. Frohnapfel and P. Forooghi published in Journal of Fluid Mechanics, 2019. (DOI: 10.1017/jfm.2019.1030) Abstract: Turbulent flow over a surface with streamwise-elongated rough and smooth stripes is studied by means of direct numerical simulation (DNS) in a periodic plane open channel with fully resolved roughness. The goal is to understand how the mean height of roughness affects the characteristics of the secondary flow formed above a spanwise-heterogeneous rough surface. To this end, while the statistical properties of roughness texture as well as the width and spacing of the rough stripes are kept constant, the elevation of the smooth stripes is systematically varied in different simulation cases. Utilizing this variation three configurations representing protruding, recessed and an intermediate type of roughness are analysed. In all cases secondary flows are present and the skin friction coefficients calculated for all the heterogeneous rough surfaces are meaningfully larger than what would result from the area-weighted average of those of homogeneous smooth and rough surfaces. This drag increase appears to be linked to the strength of the secondary flow. The rotational direction of the secondary motion is shown to depend on the relative surface elevation. The present results suggest that this rearrangement of the secondary flow is linked to the spatial distribution of the spanwise-wall-normal Reynolds stress component which carries opposing signs for protruding and recessed roughness. Numerical Details: The carried out DNS is based on a pseudo-spectral solver for incompressible boundary layer flows developed at KTH/Stockholm. The Navier-Stokes equations are numerically integrated using the velocity-vorticity formulation by a spectral method with Fourier decomposition in the horizontal directions and Chebyshev discretization in the wall-normal direction. For temporal advancement, the convection and viscous terms are discretized using the 3rd order Runge-Kutta and Crank-Nicolson methods, respectively. The simulation domain represents an open turbulent channel flow with periodic boundary conditions applied in streamwise and spanwise directions, while the wall-normal extension of the domain is bounded by no-slip boundary conditions at the lower domain wall (y = 0) and symmetry boundary conditions (v = 0, ∂u/∂y = ∂w/∂y = 0) at the upper boundary (y = δ). The flow is driven by a prescribed constant pressure gradient (CPG). The friction Reynolds number for the present case is fixed to Re_τ = 500. Simulation configuration

    • Grid nodes: Nx x Ny x Nz = 768 × 301 × 384
    • Domain size: Lx x Ly x Lz = 8δ × δ × 4δ
    • Resolution: ∆x+=5.2, ∆y_min+=0.014, ∆y_max+=2.6, ∆z+ = 5.2 The surface structure is introduced through an immersed boundary method (IBM) based on the method proposed by Goldstein et al. (1993) and is essentially a proportional controller which imposes zero velocity in the solid region of the numerical domain. The structure is placed on the lower domain wall in such a way that the surface height H of the largest raised surface elements is given by H/δ = 10.2%. Data Files: The data files are saved and labeled corresponding to the figure in the manuscript in *.mat files. Each file contains MATLAB data consisting of the plotted quantities and corresponding coordinates. The data is non-dimensionalized as shown in the manuscript figures utilizing friction velocity u_τ, viscous lengthscale δ_ν or bulk mean velocity U_b and effective domain height δ_eff. A matlab script “plot_figures.m” provides the code, which loads the data and plots it in the same way as it has been done in the manuscript. “height_distributions.mat” contains the original roughness distributions utilized in the considered simulations. The files can be also loaded and plotted using “plot_figures.m” 3-dimensional instantaneous snapshot and time series of velocity fields is available upon request (alexander.stroh@kit.edu). Reference: Please provide a reference to the article above when using this data. Please direct questions regarding numerical setup/data to Alexander Stroh Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ November, 2019
    Zeige alles Zeige Markdown
    Schlagworte:
    -
    Zugehörige Informationen:
    -
    Sprache:
    -
    Herausgeber/in:
    Karlsruhe Institute of Technology
    Erstellungsjahr:
    2019
    Fachgebiet:
    Engineering
    Objekttyp:
    Dataset
    Datenquelle:
    -
    Verwendete Software:
    -
    Datenverarbeitung:
    -
    Erscheinungsjahr:
    2023
    Rechteinhaber/in:
    Stroh, A.

    Schäfer, K. https://orcid.org/0000-0002-1704-8233

    Frohnapfel, B.

    Forooghi, P.
    Förderung:
    -
    Zeige alles Zeige weniger
    Name Speichervolumen Metadaten Upload Aktion
    Status:
    Publiziert
    Eingestellt von:
    kitopen
    Erstellt am:
    2023-04-20
    Archivierungsdatum:
    2023-06-21
    Archivgröße:
    5,4 MB
    Archiversteller:
    kitopen
    Archiv-Prüfsumme:
    93be68514049498c66d82ff80a06b77f (MD5)
    Embargo-Zeitraum:
    -
    DOI: 10.35097/1199
    Publikationsdatum: 2023-06-21
    Datenpaket herunterladen
    Herunterladen (5,4 MB)

    Metadaten herunterladen
    Statistik
    0
    Views
    0
    Downloads
    Lizenz für das Datenpaket
    Dieses Werk ist lizenziert unter
    CC BY-NC 4.0
    CC icon
    Datenpaket zitieren
    Stroh, A.; Schäfer, K.; Frohnapfel, B.; et al. (2023): Dataset for rearrangement of secondary flow over spanwise heterogeneous roughness. Karlsruhe Institute of Technology. DOI: 10.35097/1199
    • Über das Repository
    • Datenschutzerklärung
    • Nutzungsbedingungen
    • Impressum
    • Erklärung zur Barrierefreiheit
    1.22.5 (f) / 1.15.6 (b) / 1.22.3 (i)
    RADAR ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten. Betreiber ist FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH (im Folgenden „wir“ oder „uns“ genannt). Über RADAR können Dritte („Datengeberinnen“ bzw. „Datengeber“) Forschungsdaten zu Datenpaketen zusammenstellen, mit Metadaten beschreiben, dauerhaft speichern und öffentlich zugänglich machen. Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und uns erschöpft sich im Download von Datenpaketen oder Metadaten. Wir behalten uns vor, die Nutzung von RADAR einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf archivierte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Wir übernehmen für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Wir stellen Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.





    Juli 2019 / FIZ Karlsruhe