Alternativer Identifier:
(KITopen-DOI) 10.5445/IR/1000143199
Verwandter Identifier:
-
Ersteller/in:
Schrammer, Stefan https://orcid.org/0000-0002-4837-5536 [Schrammer, Stefan]
Beitragende:
(Other)
Hochbruck, Marlis [Hochbruck, Marlis]

(Other)
Neher, Markus [Neher, Markus]
Titel:
Numerical experiments to "Rank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equations"
Weitere Titel:
-
Beschreibung:
(Technical Remarks) Instructions: The scripts inside the subfolders are intended to reproduce the figures from the preprint> Rank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equations by Marlis Hochbruck, Markus Neher, and Stefan Schrammer Requirements The codes are tested with Ubuntu 20.04.2 LTS and Python 3.8.5 and the following version of its modules: numpy 1.19.2 scipy 1.5.2 numba 0.51.2 colorama 0.4.4 h5py 2.10.0 matplotlib 3.3.2 tikzplotlib 0.9.6 Generation of figures (tikz files containing the data are also created) In the folder fracginz open a console and run the commands 1. to create the data for Figures (1) and (2) python3 fgl.py 2. to create Figures (1) and (2) python3 fgl_results.py In the folder fracschr open a console and run the commands 3. to create the data for Figure (3) python3 fsr.py 4. to create Figure (3) python3 fsr_results.py In the folder laserplasma open a console and run the commands 5. to create the data for Figures (4) and (5) python3 lpi.py 6. to create Figures (4) and (5) python3 lpi_globalerr.py python3 lpi_svals_maxint.py In the folder sineg open a console and run the commands 7. to create the data for Figures (6) and (7) python3 sineg.py 8. to create Figures (6) and (7) python3 sineg_globalerr_ranks.py If the reference solutions shall be recomputed, uncomment the line methods.append(...) at the beginning of the scripts fgl.py, fsr.py, lpi.py, and sineg.py, respectively.
Schlagworte:
dynamical low-rank approximation
matrix differential equations
rank-adaptivity
Zugehörige Informationen:
-
Sprache:
-
Erstellungsjahr:
Fachgebiet:
Mathematics
Objekttyp:
Dataset
Datenquelle:
-
Verwendete Software:
-
Datenverarbeitung:
-
Erscheinungsjahr:
Rechteinhaber/in:
Förderung:
-
Name Speichervolumen Metadaten Upload Aktion
Status:
Publiziert
Eingestellt von:
kitopen
Erstellt am:
Archivierungsdatum:
2023-06-21
Archivgröße:
26,0 GB
Archiversteller:
kitopen
Archiv-Prüfsumme:
1876af63d75a80d5acee2fb40062ff29 (MD5)
Embargo-Zeitraum:
-