Alternativer Identifier:
(KITopen-DOI) 10.5445/IR/1000099232
Verwandter Identifier:
-
Ersteller/in:
Wellmann, Marie-Constanze [Wellmann, Marie-Constanze]
Beitragende:
(Other)
Barrett, Andrew I. [Barrett, Andrew I.]

(Other)
Johnson, Jill S. [Johnson, Jill S.]

(Other)
Kunz, Michael https://orcid.org/0000-0002-0202-9558 [Kunz, Michael]

(Other)
Vogel, Bernhard [Vogel, Bernhard]

(Other)
Carslaw, Ken S. [Carslaw, Ken S.]

(Other)
Hoose, Corinna https://orcid.org/0000-0003-2827-5789 [Hoose, Corinna]
Titel:
Training data and emulators for the analysis of sensitivity of deep convective clouds and hail to environmental conditions and microphysics (updated version)
Weitere Titel:
-
Beschreibung:
(Abstract) This study aims to identify whether model parameters describing atmospheric conditions such as wind shear or model parameters related to cloud microphysics such as the fall velocity of hail lead to larger uncertainties in the prediction of deep convective clouds. In an idealized setup of a cloud-res...

(Technical Remarks) There are three csv-files labeled "InputDesign" which give the input combinations of parameters used for the COSMO simulations. The remaining csv-files contain the processed model output (spatio-temporal means or maximum values) for output parameters of interest. This dataset was used to train the e...
Schlagworte:
-
Zugehörige Informationen:
-
Sprache:
-
Erstellungsjahr:
Fachgebiet:
Geological Science
Objekttyp:
Dataset
Datenquelle:
-
Verwendete Software:
-
Datenverarbeitung:
-
Erscheinungsjahr:
Rechteinhaber/in:
Wellmann, Marie-Constanze
Förderung:
-
Name Speichervolumen Metadaten Upload Aktion
Status:
Publiziert
Eingestellt von:
kitopen
Erstellt am:
Archivierungsdatum:
2023-06-24
Archivgröße:
42,5 MB
Archiversteller:
kitopen
Archiv-Prüfsumme:
f17ec9519f89982c3f60e82739171ef2 (MD5)
Embargo-Zeitraum:
-