Direkt zum Inhalt

Diese Website setzt ausschließlich technisch notwendige Cookies ein, die spätestens mit dem Schließen Ihres Browsers gelöscht werden. Wenn Sie mehr über Cookies erfahren möchten, klicken Sie bitte auf die Datenschutzerklärung.

DE EN
Testen Anmelden
Logo, zur Startseite
  1. Sie sind hier:
  2. Multivariate time series dataset of milling 16MnCr5 for anomaly detection
...

    Datenpaket: Multivariate time series dataset of milling 16MnCr5 for anomaly detection

    • RADAR-Metadaten
    • Inhalt
    • Statistiken
    • Technische Metadaten
    Alternativer Identifier:
    (KITopen-DOI) 10.5445/IR/1000151546
    Verwandter Identifier:
    -
    Ersteller/in:
    Schlagenhauf, Tobias [Institut für Produktionstechnik]

    Wolf, Jan [Institut für Produktionstechnik]

    Puchta, Alexander [Institut für Produktionstechnik]
    Beitragende:
    -
    Titel:
    Multivariate time series dataset of milling 16MnCr5 for anomaly detection
    Weitere Titel:
    -
    Beschreibung:
    (Abstract) The dataset was recorded during milling of 16MnCr5. Due to artificially introduced, though realistic anoma-lies in the workpiece the dataset can be applied for anomaly detection. Furthermore, milling tools with two different diameters where used which led to a dataset eligible for transfer learning.

    The dataset was recorded during milling of 16MnCr5. Due to artificially introduced, though realistic anoma-lies in the workpiece the dataset can be applied for anomaly detection. Furthermore, milling tools with two different diameters where used which led to a dataset eligible for transfer learning.


    (Technical Remarks) The dataset consists of seven folders. Each folder represents one milling run. In each milling run the depth of cut was set to 3 mm. A folder contains a maximum of three json files. The number of files depends on the time needed for each run which is a function of milling tool diameter and feed rate... The dataset consists of seven folders. Each folder represents one milling run. In each milling run the depth of cut was set to 3 mm. A folder contains a maximum of three json files. The number of files depends on the time needed for each run which is a function of milling tool diameter and feed rate. Files in each folder were numerated in sequence. For example, folder “run1” contains the files “run1_1” and “run1_2” with the last number indicating the order in which the files were generated. The frequency of recording datapoints was set to 500 Hz. During each milling run the milling tool moved along the longitudinal side and then was moved back alongside the workpiece. This way machining started always on the same side of the workpiece. Table 1 provides an overview of the milling runs. Run 1 to 4 were performed with a HSS tool with a diameter of 10 mm. The tool in use was an end mill (HSS-E-SPM HPC 10 mm) developed by Hoffmann Group. During the first three runs with this end mill no tool breakage occurred. However, in run 4 the tool broke. Runs 5 and 6 were performed by milling with an end mill of the same tool series (HSS-E-SPM HPC 8 mm) that just differs in tool diameter. In contrast to this run 7 was performed by using a solid carbid tool (Solid carbide roughing end mill HPC 8 mm). Cutting with SC tools provides much higher productivity with the downside being higher tool price. In our case the SC end mill performed cuts with a feed rate of 1150 mm/min compared to 191 mm/min achieved by a HSS end mill of the same diameter. Tool breakages were recorded on all runs with end mills of diameter 8 mm. Table 1. overview of the data folders folder name | number of json files | tool diameter | tool breakage | tool type run 1 2 10 mm No HSS run 2 2 10 mm No HSS run 3 2 10 mm No HSS run 4 2 10 mm Yes HSS run 5 2 8 mm Yes HSS run 6 3 8 mm Yes HSS run 7 1 8 mm Yes SC Each json file consists of a header and a payload. The header lists all parameters that were recorded such as position, motor torque and motor current of each of a maximum of five axes of a milling machine. However, the machine used in our experiments is a 3-axis machining center which leaves the payload of 2 possible additional axes to be empty. In the payload the sequential data for each parameter can be found. A list of recorded signals can be found in Table 2. Table 2. recorded signals during milling Signal index in payload | Signal name | Signal Address |Type 13-18 VelocityFeedForward VEL_FFW|1* double 19-24 Power POWER|1* string 25-30 CountourDeviation CONT_DEV|1* double 38-43 TorqueFeedForward TORQUE_FFW|1* double 44-49 Encoder1Position ENC1_POS|1* double 56-61 Load LOAD|1* double 68-73 Torque TORQUE|1* double 68-91 Current CURRENT|1* double * 1 represents x-axis, 2 represents y-axis, 3 represents z-axis and 6 represents spindle-axis. Note that our milling center has 3 axis and therefore values for axes 4 and 5 are null.

    The dataset consists of seven folders. Each folder represents one milling run. In each milling run the depth of cut was set to 3 mm. A folder contains a maximum of three json files. The number of files depends on the time needed for each run which is a function of milling tool diameter and feed rate. Files in each folder were numerated in sequence. For example, folder “run1” contains the files “run1_1” and “run1_2” with the last number indicating the order in which the files were generated. The frequency of recording datapoints was set to 500 Hz. During each milling run the milling tool moved along the longitudinal side and then was moved back alongside the workpiece. This way machining started always on the same side of the workpiece. Table 1 provides an overview of the milling runs. Run 1 to 4 were performed with a HSS tool with a diameter of 10 mm. The tool in use was an end mill (HSS-E-SPM HPC 10 mm) developed by Hoffmann Group. During the first three runs with this end mill no tool breakage occurred. However, in run 4 the tool broke. Runs 5 and 6 were performed by milling with an end mill of the same tool series (HSS-E-SPM HPC 8 mm) that just differs in tool diameter. In contrast to this run 7 was performed by using a solid carbid tool (Solid carbide roughing end mill HPC 8 mm). Cutting with SC tools provides much higher productivity with the downside being higher tool price. In our case the SC end mill performed cuts with a feed rate of 1150 mm/min compared to 191 mm/min achieved by a HSS end mill of the same diameter. Tool breakages were recorded on all runs with end mills of diameter 8 mm. Table 1. overview of the data folders folder name | number of json files | tool diameter | tool breakage | tool type run 1 2 10 mm No HSS run 2 2 10 mm No HSS run 3 2 10 mm No HSS run 4 2 10 mm Yes HSS run 5 2 8 mm Yes HSS run 6 3 8 mm Yes HSS run 7 1 8 mm Yes SC Each json file consists of a header and a payload. The header lists all parameters that were recorded such as position, motor torque and motor current of each of a maximum of five axes of a milling machine. However, the machine used in our experiments is a 3-axis machining center which leaves the payload of 2 possible additional axes to be empty. In the payload the sequential data for each parameter can be found. A list of recorded signals can be found in Table 2. Table 2. recorded signals during milling Signal index in payload | Signal name | Signal Address |Type 13-18 VelocityFeedForward VEL_FFW|1* double 19-24 Power POWER|1* string 25-30 CountourDeviation CONT_DEV|1* double 38-43 TorqueFeedForward TORQUE_FFW|1* double 44-49 Encoder1Position ENC1_POS|1* double 56-61 Load LOAD|1* double 68-73 Torque TORQUE|1* double 68-91 Current CURRENT|1* double

    • 1 represents x-axis, 2 represents y-axis, 3 represents z-axis and 6 represents spindle-axis. Note that our milling center has 3 axis and therefore values for axes 4 and 5 are null.
    Zeige alles Zeige Markdown
    Schlagworte:
    Anomaly Detection
    Transfer Learning
    Machine Learning
    Production Science
    Zugehörige Informationen:
    -
    Sprache:
    -
    Herausgeber/in:
    Karlsruhe Institute of Technology
    Erstellungsjahr:
    2022
    Fachgebiet:
    Engineering
    Objekttyp:
    Dataset
    Datenquelle:
    -
    Verwendete Software:
    -
    Datenverarbeitung:
    -
    Erscheinungsjahr:
    2023
    Rechteinhaber/in:
    Schlagenhauf, Tobias

    Wolf, Jan

    Puchta, Alexander
    Förderung:
    -
    Zeige alles Zeige weniger
    Name Speichervolumen Metadaten Upload Aktion
    Status:
    Publiziert
    Eingestellt von:
    kitopen
    Erstellt am:
    2023-04-20
    Archivierungsdatum:
    2023-06-21
    Archivgröße:
    219,4 MB
    Archiversteller:
    kitopen
    Archiv-Prüfsumme:
    7fbd9e2823ea8d6a41b04edd806b40ae (MD5)
    Embargo-Zeitraum:
    -
    DOI: 10.35097/1398
    Publikationsdatum: 2023-06-21
    Datenpaket herunterladen
    Herunterladen (219,4 MB)

    Metadaten herunterladen
    Statistik
    0
    Views
    0
    Downloads
    Lizenz für das Datenpaket
    Dieses Werk ist lizenziert unter
    CC BY 4.0
    CC icon
    Datenpaket zitieren
    Schlagenhauf, Tobias; Wolf, Jan; Puchta, Alexander (2023): Multivariate time series dataset of milling 16MnCr5 for anomaly detection. Karlsruhe Institute of Technology. DOI: 10.35097/1398
    • Über das Repository
    • Datenschutzerklärung
    • Nutzungsbedingungen
    • Impressum
    • Erklärung zur Barrierefreiheit
    1.22.5 (f) / 1.15.6 (b) / 1.22.3 (i)
    RADAR ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten. Betreiber ist FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH (im Folgenden „wir“ oder „uns“ genannt). Über RADAR können Dritte („Datengeberinnen“ bzw. „Datengeber“) Forschungsdaten zu Datenpaketen zusammenstellen, mit Metadaten beschreiben, dauerhaft speichern und öffentlich zugänglich machen. Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und uns erschöpft sich im Download von Datenpaketen oder Metadaten. Wir behalten uns vor, die Nutzung von RADAR einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf archivierte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Wir übernehmen für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Wir stellen Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.





    Juli 2019 / FIZ Karlsruhe