Direkt zum Inhalt

Diese Website setzt ausschließlich technisch notwendige Cookies ein, die spätestens mit dem Schließen Ihres Browsers gelöscht werden. Wenn Sie mehr über Cookies erfahren möchten, klicken Sie bitte auf die Datenschutzerklärung.

DE EN
Testen Anmelden
Logo, zur Startseite
  1. Sie sind hier:
  2. Thermal Material Properties of Commercial NMC532 / Graphite Lithium-Ion Battery Cell
...

    Datenpaket: Thermal Material Properties of Commercial NMC532 / Graphite Lithium-Ion Battery Cell

    • RADAR-Metadaten
    • Inhalt
    • Statistiken
    • Technische Metadaten
    Alternativer Identifier:
    -
    Verwandter Identifier:
    -
    Ersteller/in:
    Cloos, Lisa https://orcid.org/0009-0006-1001-2891 [Institut für Thermische Verfahrenstechnik]

    Herberger, Sabrina [Institut für Thermische Verfahrenstechnik]

    Queisser, Oliver [Institut für Thermische Verfahrenstechnik]

    Seegert, Philipp [Institut für Thermische Verfahrenstechnik]

    Wetzel, Thomas [Institut für Thermische Verfahrenstechnik]
    Beitragende:
    -
    Titel:
    Thermal Material Properties of Commercial NMC532 / Graphite Lithium-Ion Battery Cell
    Weitere Titel:
    -
    Beschreibung:
    (Abstract) In electrical automotive application lithium-ion battery cells containing a NMC532 cathode chemistry are state-of-the art[1]. To model their thermal-electrical performance during application, the thermal and electrical properties are essential. In this work, we present the thermal material propertie... In electrical automotive application lithium-ion battery cells containing a NMC532 cathode chemistry are state-of-the art[1]. To model their thermal-electrical performance during application, the thermal and electrical properties are essential. In this work, we present the thermal material properties of the coatings of the investigated NMC532 / graphite cell. These include the heat capacity measured with a differential scanning calorimeter and the density measured with a pycnometer. The temperature dependent thermal conductivity of the coatings is then calculated from the thermal diffusivity of double sided coated current collector, which is conducted with a laser flash analysis. The standard deviations with error propagation of the coatings are maximum of ≈ 7 %.

    In electrical automotive application lithium-ion battery cells containing a NMC532 cathode chemistry are state-of-the art[1]. To model their thermal-electrical performance during application, the thermal and electrical properties are essential. In this work, we present the thermal material properties of the coatings of the investigated NMC532 / graphite cell. These include the heat capacity measured with a differential scanning calorimeter and the density measured with a pycnometer. The temperature dependent thermal conductivity of the coatings is then calculated from the thermal diffusivity of double sided coated current collector, which is conducted with a laser flash analysis. The standard deviations with error propagation of the coatings are maximum of ≈ 7 %.

    Zeige alles

    (Technical Remarks) The commercial 3.4 Ah pouch cell contains a NMC532 / graphite cell chemistry[2]. The procedure is the same as already described by Cloos et al.[5]: “The cell opening is performed at a State of Charge (SoC) of 0 % in an inert environment in a glove box. After disassembly, the anode and cathode sheet... The commercial 3.4 Ah pouch cell contains a NMC532 / graphite cell chemistry[2]. The procedure is the same as already described by Cloos et al.[5]: “The cell opening is performed at a State of Charge (SoC) of 0 % in an inert environment in a glove box. After disassembly, the anode and cathode sheets were triple washed with DMC and left to dry. For the density and heat capacity measurements, the coatings of both anode and cathode sheets were scraped off. For the thermal diffusivity measurements 18 mm double coated coins were punched from the sheets. All probes were exposed to air only very shortly before inserting them into the measurement devices. The experimental analysis is performed according to Oehler et al.[3]. The density measurement is done with a Micro Ultrapyc 1200e Gas (Quantachrome Instruments) pycnometer in nitrogen gas. The heat capacity is measured in a Q2000 (TA Instruments) differential scanning calorimeter in a temperature range from -40 °C to 60 °C. The thermal diffusivity measurement of the double coated coins is performed in helium atmosphere in a LFA 467 Hyperflash (NETZSCH-Gerätebau GmbH) in a temperature range from -20 °C to 60 °C. To calculate the thermal conductivity of the coatings via a serial connection[4], additional knowledge of the layer thicknesses, porosities of the coatings and the thermal material properties of the current collectors are needed. The thicknesses of the coatings and current collectors are measured with a Micromar 40 EWR (Mahr GmbH). A Balance XPE206DR precision scale (Mettler Toledo) was used to measure the mass of the coating probes. The porosity of the coating was then determined gravimetrically. All measurements were conducted at least three times. Error propagation of the standard deviation was performed for the calculated values.”[5] We assume the anode and cathode current collectors to be copper and aluminum respectively. The thermal conductivity at 0 °C[6], the density[5] and temperature dependent heat capacities[5] are obtained from literature. [1] R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat Energy 2018, 3, 267–278. [2] L. Cloos, O. Queisser, A. Chahbaz, S. Paarmann, D. U. Sauer, T. Wetzel, Batteries & Supercaps 2024, 7, e202300445. [3] D. Oehler, P. Seegert, T. Wetzel, Energy Technol. 2021, 9, 2000574. [4] A. Loges, S. Herberger, D. Werner, T. Wetzel, Journal of Power Sources 2016, 325, 104–115. [5] L. Cloos, S. Herberger, P. Seegert, T. Wetzel, Karlsruhe Institute of Technology 2024, DOI 10.35097/kAlrZQzUaHBxWkIj. [6] P. Stephan, S. Kabelac, M. Kind, D. Mewes, K. Schaber, T. Wetzel, Eds. , VDI-Wärmeatlas: Fachlicher Träger VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, Springer Berlin Heidelberg, Berlin, Heidelberg, 2019.

    The commercial 3.4 Ah pouch cell contains a NMC532 / graphite cell chemistry[2]. The procedure is the same as already described by Cloos et al.[5]: “The cell opening is performed at a State of Charge (SoC) of 0 % in an inert environment in a glove box. After disassembly, the anode and cathode sheets were triple washed with DMC and left to dry. For the density and heat capacity measurements, the coatings of both anode and cathode sheets were scraped off. For the thermal diffusivity measurements 18 mm double coated coins were punched from the sheets. All probes were exposed to air only very shortly before inserting them into the measurement devices. The experimental analysis is performed according to Oehler et al.[3]. The density measurement is done with a Micro Ultrapyc 1200e Gas (Quantachrome Instruments) pycnometer in nitrogen gas. The heat capacity is measured in a Q2000 (TA Instruments) differential scanning calorimeter in a temperature range from -40 °C to 60 °C. The thermal diffusivity measurement of the double coated coins is performed in helium atmosphere in a LFA 467 Hyperflash (NETZSCH-Gerätebau GmbH) in a temperature range from -20 °C to 60 °C. To calculate the thermal conductivity of the coatings via a serial connection[4], additional knowledge of the layer thicknesses, porosities of the coatings and the thermal material properties of the current collectors are needed. The thicknesses of the coatings and current collectors are measured with a Micromar 40 EWR (Mahr GmbH). A Balance XPE206DR precision scale (Mettler Toledo) was used to measure the mass of the coating probes. The porosity of the coating was then determined gravimetrically. All measurements were conducted at least three times. Error propagation of the standard deviation was performed for the calculated values.”[5] We assume the anode and cathode current collectors to be copper and aluminum respectively. The thermal conductivity at 0 °C[6], the density[5] and temperature dependent heat capacities[5] are obtained from literature. [1] R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat Energy 2018, 3, 267–278. [2] L. Cloos, O. Queisser, A. Chahbaz, S. Paarmann, D. U. Sauer, T. Wetzel, Batteries & Supercaps 2024, 7, e202300445. [3] D. Oehler, P. Seegert, T. Wetzel, Energy Technol. 2021, 9, 2000574. [4] A. Loges, S. Herberger, D. Werner, T. Wetzel, Journal of Power Sources 2016, 325, 104–115. [5] L. Cloos, S. Herberger, P. Seegert, T. Wetzel, Karlsruhe Institute of Technology 2024, DOI 10.35097/kAlrZQzUaHBxWkIj. [6] P. Stephan, S. Kabelac, M. Kind, D. Mewes, K. Schaber, T. Wetzel, Eds. , VDI-Wärmeatlas: Fachlicher Träger VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, Springer Berlin Heidelberg, Berlin, Heidelberg, 2019.

    Zeige alles
    Schlagworte:
    -
    Zugehörige Informationen:
    -
    Sprache:
    -
    Herausgeber/in:
    Karlsruhe Institute of Technology
    Erstellungsjahr:
    2023
    Fachgebiet:
    Engineering
    Objekttyp:
    Dataset
    Datenquelle:
    -
    Verwendete Software:
    -
    Datenverarbeitung:
    -
    Erscheinungsjahr:
    2024
    Rechteinhaber/in:
    Cloos, Lisa https://orcid.org/0009-0006-1001-2891

    Herberger, Sabrina

    Queisser, Oliver

    Seegert, Philipp

    Wetzel, Thomas
    Förderung:
    -
    Zeige alles Zeige weniger
    Name Speichervolumen Metadaten Upload Aktion
    Status:
    Publiziert
    Eingestellt von:
    kitopen
    Erstellt am:
    2024-06-06
    Archivierungsdatum:
    2024-06-13
    Archivgröße:
    36,4 kB
    Archiversteller:
    kitopen
    Archiv-Prüfsumme:
    37bbcce5ae178de0cb527322e7cc0040 (MD5)
    Embargo-Zeitraum:
    -
    DOI: 10.35097/PBJZpqLKkwzAOJKN
    Publikationsdatum: 2024-06-13
    Datenpaket herunterladen
    Herunterladen (36,4 kB)

    Metadaten herunterladen
    Statistik
    0
    Views
    0
    Downloads
    Lizenz für das Datenpaket
    Dieses Werk ist lizenziert unter
    CC BY 4.0
    CC icon
    Datenpaket zitieren
    Cloos, Lisa; Herberger, Sabrina; Queisser, Oliver; et al. (2024): Thermal Material Properties of Commercial NMC532 / Graphite Lithium-Ion Battery Cell. Karlsruhe Institute of Technology. DOI: 10.35097/PBJZpqLKkwzAOJKN
    • Über das Repository
    • Datenschutzerklärung
    • Nutzungsbedingungen
    • Impressum
    • Erklärung zur Barrierefreiheit
    1.22.5 (f) / 1.15.6 (b) / 1.22.3 (i)
    RADAR ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten. Betreiber ist FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH (im Folgenden „wir“ oder „uns“ genannt). Über RADAR können Dritte („Datengeberinnen“ bzw. „Datengeber“) Forschungsdaten zu Datenpaketen zusammenstellen, mit Metadaten beschreiben, dauerhaft speichern und öffentlich zugänglich machen. Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und uns erschöpft sich im Download von Datenpaketen oder Metadaten. Wir behalten uns vor, die Nutzung von RADAR einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf archivierte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Wir übernehmen für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Wir stellen Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.





    Juli 2019 / FIZ Karlsruhe